
Adding atomic FD_CLOEXEC support

Eric Blake

Last updated 2020-03-12

This white paper tracks the proposed resolution of Austin Group defect report 411
(http://austingroupbugs.net/view.php?id=411), aimed at extending support for atomic FD_CLOEXEC
support on file descriptors in Issue 8 of POSIX. Issue 7 standardized O_CLOEXEC for open() and
added F_DUPFD_CLOEXEC for fcntl(), but omitted support for atomically setting FD_CLOEXEC
when allocating file descriptors through other interfaces.

To the extent possible under law, the contributors to this document have waived all copyright and
released it to the copyright public domain, under the terms of the Creative Commons CC0 waiver:
http :// creativecommons . org / choose / zero / waiver This way, any of its material can be used by the
standards developers (or others) in any way they desire.

Table of Contents
Issue...2
Desired Action..3

<stdlib.h>...3
<sys/socket.h>...3
<unistd.h>..4
XSH 2.4...4
XSH 2.9...4
XSH 2.10...4
accept()..4
creat()...5
dup()..5
fdopen()...6
fdopendir()...7
fopen()...7
freeaddrinfo()...8
freopen()..8
mkdtemp()...9
pclose()..10
pipe()...10
popen()...10
posix_openpt()...16
posix_spawn_file_actions_adddup2()...16
posix_typed_mem_open()...17
pselect()...17
recvmsg()...17
shm_open()..17

http://austingroupbugs.net/view.php?id=411
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver

socket()..18
socketpair()..18
tmpfile()...18
tmpnam()...19
XRAT B.2..19
XRAT B.3..19
XRAT D.2..19
XRAT E.1..19

Issue

The resolution of http://austingroupbugs.net/view.php?id=149 documented that using close() on
arbitrary file descriptors is unsafe, and that applications should instead atomically create file descriptors
with FD_CLOEXEC already set. This is possible with open() and openat() using O_CLOEXEC, and
with fcntl() using F_DUPFD_CLOEXEC, but there are numerous other interfaces in the standard
which also create new file descriptors where atomic FD_CLOEXEC was not possible. Without support
for atomic FD_CLOEXEC on all possible file descriptors, multi-threaded applications have a data race
where one thread can call fork() or posix_spawn() in the window between when another thread has
created a new file descriptor and had a chance to use fcntl() to mark it FD_CLOEXEC, and thus leak
unintended file descriptors into a child process.

This bug goes hand-in-hand with http://austingroupbugs.net/view.php?id=368 which guarantees that all
other file descriptors not exposed to the application are atomically marked FD_CLOEXEC. As it adds
new interfaces, it is necessarily targeted to Issue 8.

Most of these changes are modeled after existing practice in at least Linux and Cygwin. Also, the
pipe2() function is emulated on many other platforms in the gnulib library, although FD_CLOEXEC is
not atomic without underlying support.

In the process of adding this, I also folded in the changes in C1X to add the 'x' modifier to the fopen()
mode, although I have added some additional requirements with <CX> shading to make it more useful.
We may decide to make further usability enhancements, such as allowing "wx+" to be a valid mode (as
is the case in glibc), rather than limiting ourselves to just the C1X spelling of "w+x".

I noticed that the standard is silent on the behavior of accept() when used on a socket marked
O_NONBLOCK, and since BSD and Linux behaviors differ (BSD inherits O_NONBLOCK while
Linux always clears the flag in the new descriptor), I documented that, while mandating particular
behavior for the new function. That is, it is implementation-defined whether accept(sock, addr,
len) behaves like accept4(sock, addr, len, 0) or accept4(sock, addr, len,
SOCK_NONBLOCK) when sock is O_NONBLOCK.

Also, I don't know of any platform where posix_spawn_file_actions_adddup2() can clear
FD_CLOEXEC, but that seems like a useful change to make while tightening the specification on how
to properly use FD_CLOEXEC, since the only standardized alternative for explicitly handing a file
descriptor to the child process while leaving it FD_CLOEXEC in the parent process involves more
complexity and risks EMFILE failure.

http://austingroupbugs.net/view.php?id=368
http://austingroupbugs.net/view.php?id=149

Not added here, but worth thinking about:

BSD and glibc both provide mkstemps() (create a temporary file with a specified suffix in the
filename), and glibc added mkostemps() as the counterpart for mkstemps() to match its mkostemp()
call added here.

Adding posix_spawn_file_actions_openat() might be useful.

The documentation for SCM_RIGHTS as a means of creating new file descriptors is very minimal (a
one-line mention in <sys/socket.h>); perhaps the sendmsg() and recvmsg() pages should document it
further, as well as adding pages to further document the various CMSG_ macros. It may also be worth
adding requirements from RFC 3542 on the CMSG_ macros, including the addition of CMSG_SPACE.

The fact that fcntl() has unspecified results on typed memory file descriptors seems a bit worrying;
perhaps we should improve things to state that certain actions (F_GETFD, F_SETFD, F_DUPFD,
F_DUPFD_CLOEXEC) are still well-defined, while leaving other actions unspecified, especially since
dup() is well-defined but is identical to fcntl() with F_DUPFD.

Desired Action

<stdlib.h>
After page 356 line 12007 [XBD <stdlib.h>], add a line with CX shading:

int mkostemp(char *, int);

<sys/socket.h>
Change page 383 line 12865 [XBD <sys/socket.h>] from:

The <sys/socket.h> header shall define the following symbolic constants with distinct
values:

to
The <sys/socket.h> header shall define the following socket types (see [xref to XSH
2.10.6]) as symbolic constants with distinct values:

At page 383 line 12869, add:
Implementations may provide additional socket types.

The header shall define the following socket creation flags, for use in socket(),
socketpair(), and accept4(). These flags shall be symbolic constants with values that are
bitwise distinct from each other and from all SOCK_* constants representing socket types:

SOCK_NONBLOCK Create a socket file descriptor with the O_NONBLOCK flag
atomically set on the new open file description.

SOCK_CLOEXEC Create a socket file descriptor with the FD_CLOEXEC flag atomically
set on that file descriptor.

Implementations may provide additional socket creation flags.

After page 384 line 12897, add a line:
MSG_CMSG_CLOEXEC Atomically set the FD_CLOEXEC flag on any file descriptors
created via SCM_RIGHTS during recvmsg().

After page 385 line 12920, add a line:
int accept4(int, struct sockaddr *restrict, socklen_t
*restrict, int);

<unistd.h>
After page 443 line 15050 [XBD <unistd.h>], add a line:

int dup3(int, int, int);

After page 444 line 15094, add a line:
int pipe2(int [2], int);

XSH 2.4
At page 489 line 16722 [XSH 2.4.3 Signal Actions], insert the following functions in sorted order into
the list of async-signal-safe functions:

accept4()
dup3()
pipe2()

XSH 2.9
At page 512 line 17693 [XSH 2.9.5.2 Cancellation Points], insert "accept4()" in sorted order into the
list of cancellation point functions.

At page 516 line 17860 [XSH 2.9.7 Thread Interactions with Regular File Operations], insert "dup3()"
in sorted order into the list of atomic file operation functions.

XSH 2.10
At page 527 line 18326 [XSH 2.10.20.2 Compatibility with IPv4], change "in the accept()," to "in the
accept(), accept4(),".

accept()
At page 559 line 19366 [XSH accept() NAME], change "accept - accept a new connection on a
socket" to "accept, accept4 - accept a new connection on a socket"

After page 559 line 19370 [SYNOPSIS], add a line:
int accept4(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len, int flag);

After page 559 line 19395 [DESCRIPTION], add the following:
If O_NONBLOCK is set on the file description for socket, it is unspecified whether
O_NONBLOCK will be set on the file description created by accept().

The accept4() function shall be equivalent to the accept() function, except that the
O_NONBLOCK flag shall not be set on the new file description if the flag argument is 0.
Additionally, the flag argument can be constructed from a bitwise-inclusive OR of flags
from the following list:

SOCK_CLOEXEC Atomically set the FD_CLOEXEC flag on the new file descriptor.

SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the new file description.

Implementations may define additional flags.

At page 559 line 19397 [RETURN VALUE], change "accept()" to "accept() and accept4()"

At page 559 lines 19400 and 19417 [ERRORS], change "accept() function" to "accept() and
accept4() functions"

After page 560 line 19419 [ERRORS], add the following:
The accept4() function may fail if:

[EINVAL] The value of the flag argument is invalid.

At page 560 line 19426 [RATIONALE], change "None." to:
The SOCK_CLOEXEC flag of accept4() is necessary to avoid a data race in multi-
threaded applications. Without it, a file descriptor is leaked into a child process created by
one thread in the window between another thread creating a file descriptor with accept()
and then using fcntl() to set the FD_CLOEXEC flag. The SOCK_NONBLOCK flag is for
convenience in avoiding additional fcntl() calls, as well as providing specific control over
the O_NONBLOCK flag, since traditional implementations of accept() differ on whether
O_NONBLOCK is inherited from the socket argument.

creat()
After page 702 line 23749 [XSH creat() RATIONALE], add the following:

In multi-threaded applications, the creat() function can leak file descriptors into child
processes. Applications should instead use open() with the O_CLOEXEC flag to avoid the
leak.

dup()
At page 741 line 24863 [XSH dup() NAME], change "dup, dup2" to "dup, dup2, dup3"

After page 741 line 24867 [SYNOPSIS], add a line:
int dup3(int fildes, int fildes2, int flag);

After page 741 line 24881 [DESRIPTION], add the following:
The dup3() function shall be equivalent to the dup2() function if the flag argument is 0,
except that it shall be an error if fildes is equal to fildes2. Additionally, the flag parameter
can be set to O_CLOEXEC (from <fcntl.h>) to cause FD_CLOEXEC flag to be set on the
new file descriptor.

At page 741 line 24882 [DESCRIPTION], change "dup2() function" to "dup2() or dup3() functions".

At page 741 lines 24890 and 24894 [ERRORS], change "dup2() function" to "dup2() and dup3()
functions".

After page 741 line 24893 [ERRORS], add the following:
The dup3() function shall fail if:

[EINVAL] The fildes and fildes2 arguments are equal.

After page 741 line 24895 [ERRORS], add the following:
The dup3() function may fail if:

[EINVAL] The value of the flag argument is invalid.

After page 742 line 24926 [RATIONALE], add the following:
The dup3() function with the O_CLOEXEC flag is necessary to avoid a data race in multi-
threaded applications. Without it, a file descriptor is leaked into a child process created by
one thread in the window between another thread creating a file descriptor with dup2() and
then using fcntl() to set the FD_CLOEXEC flag. The safe counterpart for avoiding the
same race in dup() is the use of the F_DUP_CLOEXEC action of the fcntl() function.

fdopen()
At page 820 line 27380 [XSH fdopen() DESCRIPTION], change:

The mode argument is a character string having one of the following values:

to:
The mode argument points to a character string, which shall also be valid for fopen(). The
string prefix has the following effects:

After page 820 line 27386 [DESCRIPTION], change:
The meaning of these flags is exactly as specified in fopen(), except that modes beginning
with w shall not cause truncation of the file.

to:
The meaning of these flags is exactly as specified in fopen(), except that modes beginning
with w shall not cause truncation of the file, and the use of x shall have no effect. The
FD_CLOEXEC flag of fildes shall be unchanged if e was not present, and shall be set if e is
present.

At page 821 line 27424 [RATIONALE], add the following to the same paragraph:
Since fdopen() does not create a file, the x mode modifier is silently ignored. The e mode
modifier is not strictly necessary for fdopen(), since FD_CLOEXEC must not be changed
when it is absent; however, it is standardized here since that modifier it is necessary to
avoid a data race in multi-threaded applications using freopen(), and consistency dictates
that all functions accepting mode strings should allow the same set of strings.

fdopendir()
At page 823 line 27471 [XSH fdopendir() DESCRIPTION], change:

It is unspecified whether the FD_CLOEXEC flag will be set on the file descriptor by a
successful call to fdopendir().

to:
It is unspecified whether the FD_CLOEXEC flag will be set on the file descriptor by a
successful call to fdopendir() if it was not previously set. However, the flag shall not be
cleared if it was previously set.

fopen()
At page 877 line 29115 [XSH fopen() DESCRIPTION], change:

The mode argument points to a string. If the string is one of the following, the file shall be
opened in the indicated mode. Otherwise, the behavior is undefined.

to:
The mode argument points to a character string. If the string begins with one of these six
prefixes, followed by a (possibly empty) suffix consisting of the additional characters
documented below, then the file shall be opened in the mode indicated by the prefix.
Otherwise, the behavior is undefined.

After page 877 line 29125 [DESCRIPTION], add the following:
Additionally, the following characters may appear anywhere in the suffix of the mode
string, to further affect how the file is opened. Behavior is unspecified if a character occurs
more than once.

<CX>'e' The underlying file descriptor shall have the FD_CLOEXEC flag atomically set,
as if by the O_CLOEXEC flag to open().</CX>

'x' If specified with a prefix beginning with 'w' <CX>or 'a'</CX>, then the function shall
fail if the file already exists, <CX>as if by the O_EXCL flag to open(). If specified with a
prefix beginning with 'r', this modifier shall have no effect.</CX>

After page 878 line 29168 [ERRORS], add a line:
<CX>[EEXIST] The mode argument begins with 'w' or 'a' and includes 'x', but the file
already exists.</CX>

At page 879 line 29223 [RATIONALE], change "None." to:

The e mode suffix character is provided as a convenience to avoid a data race in multi-
threaded applications. Without it, a file descriptor is leaked into a child process created by
one thread in the window between another thread creating a file descriptor with fopen()
and then using fileno() and fcntl() to set the FD_CLOEXEC flag. It is also possible to
avoid the race by using open() with O_CLOEXEC followed by fdopen(), however, there is
no safe alternative for the freopen() function, and consistency dictates that the e modifier
should be standardized for all functions that accept mode strings.

The x mode suffix character was added by C1x only for files opened with a mode string
beginning with w. However, this standard requires that it also work for mode strings
beginning with a, as well as being silently ignored rather than being an error for mode
strings beginning with r. Therefore, while open() has undefined behavior if O_EXCL is
specified without O_CREAT, the same is not true of fopen().

This standard follows the lead of C1x in requiring that b and + appear in the mode prefix
and x in the mode suffix; however, implementations are encouraged to treat both b and + as
part of the mode suffix (requiring only w, a, or r as the first character and letting all other
characters appear in any order).

freeaddrinfo()
At page 917, line 30691 [XSH freeaddrinfo() DESCRIPTION], change:

as defined in socket()

to
as defined in [xref to 2.10.6]

At page 920 line 30800 [APPLICATION USAGE], add:
The ai_socktype field pointed to by hints is just the socket type; not the socket type and
flags that can be specified when the socket is created. Passing in socket creation flags will
cause a failure with EAI_SOCKTYPE.

freopen()
At page 923 line 30897 [XSH freopen() DESCRIPTION], change "freopen() Mode" to "freopen()
Mode Prefix".

After page 923 line 30903 [DESCRIPTION], add the following:
<CX>Additionally, the presence of e in the mode suffix shall behave as if the
O_CLOEXEC flag to open() were in use. The presence of x in the mode suffix where the
prefix begins with a or w shall behave as if the O_EXCL flag to open() were specified, and
shall be ignored if the prefix begins with r.</CX>

After page 924 line 30914 [ERRORS], add a line:
<CX>[EEXIST] The mode argument begins with 'w' or 'a' and includes 'x', but the file
already exists.</CX>

At page 925 line 30979 [RATIONALE], change "None." to:
The e mode suffix character is necessary to avoid a data race in multi-threaded applications.
Without it, a file descriptor is leaked into a child process created by one thread in the
window between another thread creating a file descriptor with freopen() and then using
fileno() and fcntl() to set the FD_CLOEXEC flag.

The x mode suffix character was added by C1x only for files opened with a mode string
beginning with w. However, this standard requires that it also work for mode strings
beginning with a, as well as being silently ignored rather than being an error for mode
strings beginning with r. Therefore, while open() has undefined behavior if O_EXCL is
specified without O_CREAT, the same is not true of freopen().

This standard follows the lead of C1x in requiring that b and + appear in the mode prefix
and x in the mode suffix; however, implementations are encouraged to treat both b and + as
part of the mode suffix (requiring only w, a, or r as the first character and letting all other
characters appear in any order).

mkdtemp()
At page 1292 line 42413 [XSH mkdtemp() NAME], change "mkdtemp, mkstemp" to "mkdtemp,
mkostemp, mkstemp".

After page 1292 line 42416 [SYNOPSIS], add a line:
int mkostemp (char *template, int flag);

After page 1292 line 42433 [DESCRIPTION], add the following:
The mkostemp() function shall be equivalent to the mkstemp() function, except that the
flag argument may contain additional flags (from <fcntl.h>) to be used as if by open().
Behavior is unspecified if the flag argument contains more than the following flags:

O_APPEND Set append mode.

O_CLOEXEC Set the FD_CLOEXEC file descriptor flag.

<SIO>O_DSYNC Write according to the synchronized I/O data integrity
completion.</SIO>

<SIO>O_RSYNC Synchronized read I/O operations.</SIO>

<XSI|SIO>O_SYNC Write according to synchronized I/O file integrity completion.</XSI|
SIO>

At page 1293 line 42463 [ERRORS], change:
The error conditions for the mkstemp() function are defined in open().

to:
The error conditions for the mkstemp() and mkostemp() functions are defined in open().
Additionally, the mkostemp() function may fail if:

[EINVAL] The value of the flag argument is invalid.

At page 1293 line 42479 [RATIONALE], replace "None." with:
The function mkostemp() with the O_CLOEXEC flag is necessary to avoid a data race in
multi-threaded applications. Without it, a file descriptor is leaked into a child process
created by one thread in the window between another thread creating a temporary file
descriptor with mkstemp() and then using fcntl() to set the FD_CLOEXEC flag.

pclose()
At page 1396 lines 45748-45763 [XSH pclose() RATIONALE], replace the pclose() sample
implementation (from “The code sample below” to the end of the section) with:

See the RATIONALE for popen() for a sample implementation of pclose().

pipe()
At page 1400 line 45830 [XSH pipe() NAME], change "pipe" to "pipe, pipe2".

After page 1400 line 45833 [SYNOPSIS], add a line:
int pipe2(int fildes[2], int flag);

After page 1400 line 45849 [DESCRIPTION], add the following:
The pipe2() function shall be equivalent to the pipe() function if the flag argument is 0.
Additionally, the flag argument can be constructed from a bitwise-inclusive OR of flags
from the following list (provided by <fcntl.h>):

O_CLOEXEC Atomically set the FD_CLOEXEC flag on both new file descriptors.

O_NONBLOCK Set the O_NONBLOCK file status flag on both new file descriptions.

At page 1400 line 45854 [ERRORS], change "pipe() function" to "pipe() and pipe2() functions"

After page 1400 line 45858 [ERRORS], add the following:
The pipe2() function may fail if:

[EINVAL] The value of the flag argument is invalid.

At page 1401 line 45897 [RATIONALE], add the following:
The O_CLOEXEC flag of pipe2() is necessary to avoid a data race in multi-threaded
applications. Without it, a file descriptor is leaked into a child process created by one thread
in the window between another thread creating a file descriptor with pipe() and then using
fcntl() to set the FD_CLOEXEC flag. The O_NONBLOCK flag is for convenience in
avoiding additional fcntl() calls.

popen()
At page 1407 line 46093 [XSH popen() DESCRIPTION], change:

The popen() function shall ensure that any streams from previous popen() calls that
remain open in the parent process are closed in the new child process.

to:
The popen() function shall ensure that any streams from previous popen() calls that
remain open in the parent process are closed in the new child process, regardless of the
FD_CLOEXEC status of the file descriptor underlying those streams.

At page 1407 lines 46095 and 46099 [DESCRIPTION], change "If mode is" to "If mode starts with".

After page 1407 line 46102 [DESCRIPTION], add the following:
3. If mode includes a second character of e, then the file descriptor underlying the stream
returned to the calling process by popen() shall have the FD_CLOEXEC flag atomically
set. Additionally, if the implementation creates the file descriptor for use by the child
process from within the parent process, then that file descriptor shall have the
FD_CLOEXEC flag atomically set within the parent process. If mode does not have a
second character, the FD_CLOEXEC flag of the underlying file descriptor returned by
popen() shall be clear.

At page 1407 line 46103 [DESCRIPTION], change "3." to "4.".

At page 1408 line 46148 [APPLICATION USAGE], change "r and w" to "r,
w, re, and we".

After page 1409 line 46167 [RATIONALE], add the following:
The e mode modifier to popen() is necessary to avoid a data race in multi-threaded
applications. Without it, the parent's file descriptor is leaked into a second child process
created by one thread in the window between another thread creating the pipe via popen()
then using fileno() and fcntl() on the result. Also, if the popen() implementation
temporarily has the child's file descriptor open within the parent, then that file descriptor
could also be leaked if it is not atomically FD_CLOEXEC for the duration in which it is
open in the parent.

The standard only requires that the implementation atomically set FD_CLOEXEC on file
descriptors created in the parent process when the e mode modifier is in effect;
implementations may also do so when the e modifier is not in use, provided that the
FD_CLOEXEC bit is eventually cleared before popen() completes, however, this is not
required because any application worried about the potential file descriptor leak will
already be using the e modifier.

Although the standard is clear that a conforming application should not call popen() when
file descriptor 0 or 1 is closed, implementations are encouraged to handle these cases
correctly.

The following two examples demonstrate possible implementations of popen() using other
standard functions. These examples are designed to show FD_CLOEXEC handling rather
than all aspects of thread safety, and implementations are encouraged to improve the
locking mechanism around the state list to be more efficient, as well as to be more robust if
file descriptor 0 or 1 is returned as either part of the pipe. Also, remember that other

implementations are possible, including one that uses an implementation-specific means of
creating a pipe between parent and child where the parent process never has access to the
child's end of the pipe. Both of these examples make use of the following helper functions,
documented but not implemented here, to do the bookkeeping necessary to properly close
all file descriptors created by other popen() calls regardless of their FD_CLOEXEC status:

/* Obtain mutual exclusion lock, so that no concurrent popen() or
 pclose() calls are simultaneously modifying the list of tracked
 children. */
static void popen_lock(void);

/* Release mutual exclusion lock, without changing errno. */
static void popen_unlock(void);

/* Add the pid and stream pair to the list of tracked children, prior
 to any code that can clear FD_CLOEXEC on the file descriptor
 associated with stream. To be used while holding the lock. */
static void popen_add_pair(FILE *stream, pid_t pid);

/* Given a stream, return the associated pid, or -1 with errno set if
 the stream was not created by popen(). To be used while holding
 the lock. */
static pid_t popen_get_pid(FILE *stream);

/* Remove stream and its corresponding pid from the list of tracked
 children. To be used while holding the lock. */
static void popen_remove(FILE *stream);

/* If stream is NULL, return the first tracked child; otherwise,
 return the next tracked child. Return NULL if all tracked children
 have been returned. To be used while holding the lock. */
static FILE *popen_next(FILE *stream);

The first example is based on fork():

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <unistd.h>
FILE *popen(const char *command, const char *mode)
{
 int fds[2];
 pid_t pid;
 FILE *stream;
 int target = mode[0] == 'w'; /* index of fds used by parent */

 /* Validate mode */
 if ((mode[0] != 'w' && mode[0] != 'r') ||
 mode[1 + (mode[1] == 'e')]) {
 errno = EINVAL;
 return NULL;
 }

 /* Create pipe and stream with FD_CLOEXEC set */
 if (pipe2(fds, O_CLOEXEC) < 0)

 return NULL;
 stream = fdopen(fds[target], mode);
 if (!stream) {
 int saved = errno;
 close(fds[0]);
 close(fds[1]);
 errno = saved;
 return NULL;
 }

 /* Create child process */
 popen_lock();
 pid = fork();
 if (pid < 0) {
 int saved = errno;
 close(fds[!target]);
 fclose(stream);
 popen_unlock();
 errno = saved;
 return NULL;
 }

 /* Child process. */
 if (!pid) {
 FILE *tracked = popen_next(NULL);
 while (tracked) {
 int fd = fileno(tracked);
 if (fd < 0 || close(fd))
 _exit(127);
 tracked = popen_next(tracked);
 }
 target = mode[0] == 'r'; /* Opposite fd in the child */
 /* Use dup2 or fcntl to clear FD_CLOEXEC on child's descriptor,
 FD_CLOEXEC will take care of the rest of fds[]. */
 if (fds[target] != target) {
 if (dup2(fds[target], target) != target)
 _exit(127);
 } else {
 int flags = fcntl(fds[target], F_GETFD);
 if (flags < 0 ||
 fcntl(fds[target], F_SETFD, flags & ~FD_CLOEXEC) < 0)
 _exit(127);
 }
 execl("/bin/sh", "sh", "-c", command, NULL);
 _exit(127);
 }

 /* Parent process. From here on out, the close and fcntl system
 calls are assumed to pass, since all inputs are valid and do not
 require allocating any fds or memory. Besides, excluding
 failures due to undefined behavior (such as another thread
 closing an fd it knows nothing about), cleanup from any defined
 failures would require stopping and reaping the child process,
 which may have worse consequences. */
 close(fds[!target]);
 popen_add_pair(stream, pid);
 popen_unlock();
 if (mode[1] != 'e') {

 int flags = fcntl(fds[target], F_GETFD);
 if (flags >= 0)
 fcntl(fds[target], F_SETFD, flags & ~FD_CLOEXEC);
 }
 return stream;
}

The second example is based on posix_spawn():

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <unistd.h>
#include <spawn.h>
extern char **environ;
FILE *popen(const char *command, const char *mode)
{
 int fds[2];
 pid_t pid;
 FILE *stream;
 int target = mode[0] == 'w'; /* index of fds used by parent */
 const char *argv[] = { "sh", "-c", command, NULL };
 posix_spawn_file_actions_t actions;
 int saved;
 FILE *tracked;

 /* Validate mode */
 if ((mode[0] != 'w' && mode[0] != 'r') ||
 mode[1 + (mode[1] == 'e')]) {
 errno = EINVAL;
 return NULL;
 }

 /* Create pipe and stream with FD_CLOEXEC set */
 if (pipe2(fds, O_CLOEXEC) < 0)
 return NULL;
 stream = fdopen(fds[target], mode);
 if (!stream) {
 saved = errno;
 close(fds[0]);
 close(fds[1]);
 errno = saved;
 return NULL;
 }

 /* Create child process */
 if (posix_spawn_file_actions_init(&actions)) {
 saved = errno;
 goto spawnerr1;
 }
 popen_lock();
 tracked = popen_next(NULL);
 while (tracked) {
 int fd = fileno(tracked);
 if (fd < 0 || posix_spawn_file_actions_addclose(&actions, fd))
 goto spawnerr2;

 tracked = popen_next(tracked);
 }
 if (posix_spawn_file_actions_adddup2(&actions, fds[!target], !target))
 goto spawnerr2;
 if (posix_spawn(&pid, "/bin/sh", &actions, NULL, (char **)argv,
environ)) {
spawnerr2:
 saved = errno;
 posix_spawn_file_actions_destroy(&actions);
 popen_unlock();
spawnerr1:
 close(fds[!target]);
 fclose(stream);
 errno = saved;
 return NULL;
 }

 /* From here on out, system calls are assumed to pass, since all
 inputs are valid and do not require allocating any fds or memory.
 Besides, excluding failures due to undefined behavior (such as
 another thread closing an fd it knows nothing about), cleanup
 from any defined failures would require stopping and reaping the
 child process, which may have worse consequences. */
 posix_spawn_file_actions_destroy(&actions);
 close(fds[!target]);
 popen_add_pair(stream, pid);
 popen_unlock();
 if (mode[1] != 'e') {
 int flags = fcntl(fds[target], F_GETFD);
 if (flags >= 0)
 fcntl(fds[target], F_SETFD, flags & ~FD_CLOEXEC);
 }
 return stream;
}

Both examples can share a common pclose() implementation.

int pclose(FILE *stream)
{
 int status;
 popen_lock();
 pid_t pid = popen_get_pid(stream);
 if (pid < 0) {
 popen_unlock();
 return -1;
 }
 popen_remove(stream);
 popen_unlock();
 fclose(stream); /* Ignore failure */
 while (waitpid(pid, &status, 0) == -1) {
 if (errno != EINTR) {
 status = -1;
 break;
 }
 }
 return status;
}

Note that, while a particular implementation of popen() (such as the two above) can
assume a particular path for the shell, such a path is not necessarily valid on another
system. The above examples are not portable, and are not intended to be.

posix_openpt()
After page 1420 line 46469 [XSH posix_openpt() DESCRIPTION], add a line:

O_CLOEXEC Atomically set the FD_CLOEXEC flag on the file descriptor.

After page 1421 line 46515 [RATIONALE], add the following:
The function posix_openpt() with the O_CLOEXEC flag is necessary to avoid a data race
in multi-threaded applications. Without it, a file descriptor is leaked into a child process
created by one thread in the window between another thread creating a file descriptor with
posix_openpt() and then using fcntl() to set the FD_CLOEXEC flag.

posix_spawn_file_actions_adddup2()
At page 1433 line 46976 [XSH posix_spawn_file_actions_adddup2() DESCRIPTION], add a
sentence:

If fildes and newfildes are equal, then the action shall ensure that newfildes is inherited by
the new process with FD_CLOEXEC clear, even if the FD_CLOEXEC flag of fildes is set
at the time the new process is spawned, and even though dup2() would not make such a
change.

After page 1433 line 46999 [RATIONALE], add the following:
Although dup2() is required to do nothing when fildes and newfildes are equal and fildes is
an open descriptor, the use of posix_spawn_file_actions_adddup2() is required to cause
fildes to be accessible in the child with FD_CLOEXEC clear. This is because there is no
counterpart posix_spawn_file_actions_fcntl() that could be used for clearing the flag as an
independent file action. It would also be possible to achieve this effect by using two calls
to posix_spawn_file_actions_adddup2() and a temporary fildes value known to not conflict
with any other file descriptors, coupled with a posix_spawn_file_actions_close() to avoid
leaking the temporary, but this approach is complex, and risks EMFILE or ENFILE failure
that can be avoided with the in-place removal of FD_CLOEXEC.

There is no need for posix_spawn_file_actions_adddup3(), since it makes no sense to
create a file descriptor with FD_CLOEXEC set before spawning the child process, where
that file descriptor would immediately be closed again.

posix_typed_mem_open()
At page 1516 line 48927 [XSH posix_typed_mem_open() DESCRIPTION], change:

The FD_CLOEXEC file descriptor flag associated with the new file descriptor shall be
cleared.

to:

The FD_CLOEXEC file descriptor flag associated with the new file descriptor shall be
cleared unless oflag includes O_CLOEXEC.

At page 1516 line 48930 [DESCRIPTION], change "dup(), dup2()," to "dup(), dup2(), dup3(),".

After page 1516 line 48937 [DESCRIPTION], add the following:
Additionally, the value of oflag may include the following flag:

O_CLOEXEC Set the FD_CLOEXEC file descriptor flag.

At page 1517 line 48967 [RATIONALE], replace "None." with:
The use of the O_CLOEXEC flag to posix_typed_mem_open() is necessary to avoid
leaking typed memory file descriptors to child processes, since fcntl() has unspecified
results on typed memory objects and therefore cannot be used to set FD_CLOEXEC after
the fact. The exec family of functions already unmaps all memory associated with a typed
memory object, but does not close the file descriptor unless FD_CLOEXEC is also set.

pselect()
At page 1524 line 49184 [XSH pselect() DESCRIPTION], change "accept() function" to "accept() or
accept4() function".

recvmsg()
After page 1764 line 56369 [XSH recvmsg() DESCRIPTION], add the following:

MSG_CMSG_CLOEXEC On sockets that permit a cmsg_type of SCM_RIGHTS in the
msg_control ancillary data as a means of copying file descriptors into the process, the file
descriptors shall be created with the FD_CLOEXEC flag atomically set.

At page 1766 line 56432 [RATIONALE], replace "None." with:
The use of the MSG_CMSG_CLOEXEC flag to recvmsg() when using SCM_RIGHTS to
receive file descriptors via ancillary data is necessary to avoid a data race in multi-threaded
applications. Without it, a file descriptor is leaked into a child process created by one thread
in the window between another thread calling recvmsg() and using fcntl() to set the
FD_CLOEXEC flag.

shm_open()
At page 1901 line 60458 [XSH shm_open() RATIONALE], add a sentence:

The O_CLOEXEC open flag is not listed, because all shared memory objects are created
with the FD_CLOEXEC flag already set; an application may later use fcntl() to clear that
flag to allow the shared memory file descriptor to be preserved across the exec family of
functions.

socket()
After page 1968 line 62515 [XSH socket() DESCRIPTION], add the following:

Additionally, the type argument may contain the bitwise-inclusive OR of flags from the
following list:

SOCK_CLOEXEC Atomically set the FD_CLOEXEC flag on the new file descriptor.

SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the new file description.

Implementations may define additional flags.

At page 1969 line 62547 [RATIONALE], replace "None." with:
The use of the SOCK_CLOEXEC flag in the type argument of socket() is necessary to
avoid a data race in multi-threaded applications. Without it, a file descriptor is leaked into a
child process created by one thread in the window between another thread calling socket()
and using fcntl() to set the FD_CLOEXEC flag. The SOCK_NONBLOCK flag is for
convenience in avoiding additional fcntl() calls.

socketpair()
After page 1970 line 62586 [XSH socketpair() DESCRIPTION], add the following:

Additionally, the type argument may contain the bitwise-inclusive OR of flags from the
following list:

SOCK_CLOEXEC Atomically set the FD_CLOEXEC flag on the new file descriptors.

SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the new file descriptions.

Implementations may define additional flags.

At page 1971 line 62620 [RATIONALE], replace "None." with:
The use of the SOCK_CLOEXEC flag in the type argument of socketpair() is necessary to
avoid a data race in multi-threaded applications. Without it, a file descriptor is leaked into a
child process created by one thread in the window between another thread using
socketpair() and using fcntl() to set the FD_CLOEXEC flag. The SOCK_NONBLOCK
flag is for convenience in avoiding additional fcntl() calls.

tmpfile()
After page 2122 line 67169 [XSH tmpfile() APPLICATION USAGE], add the following:

In multi-threaded applications, the tmpfile() function can leak file descriptors into child
processes. Applications should instead use mkostemp() with the O_CLOEXEC flag,
followed by fdopen(), to avoid the leak.

tmpnam()
At page 2123 line 67239 [XSH tmpnam() APPLICATION USAGE], change "mkstemp()" to
"mkostemp(), mkstemp()".

XRAT B.2
At page 3533 line 119194 [XRAT B.2.8.3 Memory Management], change "dup2()," to "dup2(),
dup3(),".

XRAT B.3
At page 3628 line 123297 [XRAT B.3.3 Examples for Spawn], change:

if (dup2(fd, newfd) == −1)

to:
if (fd == newfd)
{
 int flags = fcntl(fd, F_GETFD);
 if (flags == -1)
 exit(127);
 flags &= ~FD_CLOEXEC;
 if (fcntl(fd, F_SETFD, flags) == -1)
 exit(127);
}
else if (dup2(fd, newfd) == -1)

XRAT D.2
At page 3690 line 125602 [XRAT D.2.3 Access to Data], change "fopen(), and pipe()" to "fopen(),
freopen(), pipe(), and pipe2()".

At page 3690 line 125605, change "dup2()," to "dup2(), dup3(),".

XRAT E.1
At page 3713 line 126332 [XRAT E.1 Subprofiling Option Groups], add "dup3()" in order to
POSIX_FD_MGMT.

At page 3714 line 126381, add "accept4()" in order to POSIX_NETWORKING.

At page 3714 line 126391, add "pipe2()" in order to POSIX_PIPE.

	Issue
	Desired Action
	<stdlib.h>
	<sys/socket.h>
	<unistd.h>
	XSH 2.4
	XSH 2.9
	XSH 2.10
	accept()
	creat()
	dup()
	fdopen()
	fdopendir()
	fopen()
	freeaddrinfo()
	freopen()
	mkdtemp()
	pclose()
	pipe()
	popen()
	posix_openpt()
	posix_spawn_file_actions_adddup2()
	posix_typed_mem_open()
	pselect()
	recvmsg()
	shm_open()
	socket()
	socketpair()
	tmpfile()
	tmpnam()
	XRAT B.2
	XRAT B.3
	XRAT D.2
	XRAT E.1

